This function takes f2_blocks as input, computes outgroup f3 statistics, and then computes PCA and MDS from the f3 statistics.

calc_mds(f2_blocks, poplabels, outgroup)

Arguments

f2_blocks

A 3d array of blocked f2 statistics

poplabels

Filename of poplabels file

outgroup

Name of outgroup population

Value

Returns a data frame storing the PCA and MDS results.

Examples

#These lines assign file names to variables file_anc, file_mut, poplabels, file_map.
#see https://myersgroup.github.io/relate/getting_started.html#Output for file formats
file_anc  <- system.file("sim/msprime_ad0.8_split250_1_chr1.anc.gz", package = "twigstats")
file_mut  <- system.file("sim/msprime_ad0.8_split250_1_chr1.mut.gz", package = "twigstats")
#see https://myersgroup.github.io/relate/input_data.html for file formats
poplabels <- system.file("sim/msprime_ad0.8_split250_1.ind.poplabels", package = "twigstats")
file_map       <- system.file("sim/genetic_map_combined_b37_chr1.txt.gz", package = "twigstats") #recombination map (three column format)

f2_blocks <- f2_blocks_from_Relate(file_anc = file_anc, file_mut = file_mut, poplabels = poplabels, file_map = file_map, t = 1000)
df <- calc_mds(f2_blocks, poplabels, "P4")
print(head(df))
#>          PC1       PC2        PC3     ID    POP GROUP SEX method
#> 1  -4.925615 -3.092605  0.3954621  tsk_0  tsk_0    P1  NA    PCA
#> 2  -5.251956 -2.649876  1.0559442  tsk_1  tsk_1    P1  NA    PCA
#> 11 -3.404097  2.342448  0.1492084 tsk_10 tsk_10    P2  NA    PCA
#> 12 -3.528335  4.113717  0.5620541 tsk_11 tsk_11    P2  NA    PCA
#> 13 -4.202899  1.147829 -0.9252663 tsk_12 tsk_12    P2  NA    PCA
#> 14 -3.734241  0.796142 -0.1207356 tsk_13 tsk_13    P2  NA    PCA